搜索

探究MEMS红外探测器发展趋势及应用前景

gecimao 发表于 2019-05-09 04:27 | 查看: | 回复:

  红外探测是以红外成像为核心的一项探测技术,它通过把红外辐射转换成其它可测量物理信号(如:电压),并对该物理信号做相应的模拟或数字信号处理,从而得到可供人类视觉分辨的图像。发展至今,红外探测技术已经广泛应用于军事、医疗、农业、安防等多个领域。

  MEMS(MIcro electROMechanical system)又称为微机电系统,它现已被广泛应用于电脑、汽车、医疗仪器和航空航天等的微芯片制造中,因为它不仅具有体积小、重量轻、可靠性高的优点、还能持续提升芯片性能并降低成本,利于大批量生产,因此受到高技术产业市场的欢迎。

  红外探测器主要包括四大部分。(1)红外成像镜头,主要作用是把探测目标成像到探测器组件上;(2)红外焦平面阵列FPA(focus plane array),这部分的作用是把红外辐射转化为其它便于测量的物理信号,如:电信号;(3)信号处理部分,对红外焦平面阵列输出的物理信号做放大、滤波等处理,然后转换为视频信号;(4)显示器,接收视频信号,显示出图像。

  红外探测器中的核心组件是红外焦平面阵列部分,该组件是国内外研究的热点。根据探测机理可将红外焦平面阵列的探测单元分成两大类:光子型探测器(制冷型探测器)和热型探测器(非制冷型探测器)。具体分类如下:

  光子型红外探测器,其工作基础是半导体材料的内光电效应—光电导效应或光生伏特效应,具体可以分为以下几种:光电导型探测器、光电子发射型探测器、光伏型探测器。光子型红外成像系统的最大优点是探测灵敏度高,其缺点是工作时需要用液氮进行冷却,以消除探测器的热噪声,整个成像系统就需要增加制冷器和杜瓦瓶等额外设备,使得系统制造成本偏高,功耗、体积和重量都较大。这些缺点导致光子型红外成像系统基本只应用于天文、军事和学术研究等领域。

  热型红外探测器,其主要是基于红外辐射的热效应—像素(内含敏感元)吸收红外辐射导致其温度上升,从而引起敏感元的某些可测量的物理特性的变化,通过测量这种变化完成红外探测。这些可测量的变化包括:电阻变化、电容变化、热释电效应、赛贝克(Seebeck)效应、气体压力变化、液晶色变和热弹性效应等等。传统的热型探测器可以分为以下几种:热敏电阻探测器、热释电型探测器、热电偶型探测器。热型红外成像系统不需要液氮制冷,整个成像系统的功耗、体积和重量较小,容易维护,价格相对低廉。热型红外成像系统的探测灵敏度低于制冷型成像系统,其噪声等效温差在0.1K左右。热型红外成像系统已广泛用于人类日常生活中,如:夜视仪、安全监控和热像仪。

  热型红外探测器的发展一直落后于光子型红外探测器,随着材料科学的发展和加工手段的改进,尤其是薄膜工艺和MEMS 技术等关键支撑技术的逐渐成熟,热型红外焦平面阵列技术不断取得突破,热型红外探测器已逐渐成为红外研究领域的热点。热型红外探测器的最大优点是能在热下工作,为实现低成本、小型化、便携式红外探测系统开辟了道路,目前热型红外探测系统的生产成本与市场价格已大为降低,为量子型红外探测器的几分之一。虽然与量子型红外探测器相比较,热型红外探测器响应速度较慢,但随着技术的发展,热型红外探测器已完全能满足凝视成像的要求。

  热型红外探测的关键是如何制作具有良好热绝缘特性的结构。一般而言,悬空结构具有良好的热绝缘性能,而制作这种悬空结构正是MEMS技术的优势。红外探测技术的发展历史已经证明:正是日益成熟的MEMS技术和成熟的IC技术共同推动了非致冷红外探测器的发展。

  按照信号读出方式的差别,基于MEMS技术的非致冷红外探测器可分为电学读出方式和光学读出方式非致冷红外探测器。电学读出方式是一种传统信号检出方式,目前正在使用的红外探测器都采用电学读出方式;采用光学方法读出红外信号则是一种新型的信号检出方式,它具有高灵敏度、高分辨率等特点,是近年来广受关注的一项新型检出技术。

  MEMS热电堆红外探测器属于一种电学读出非制冷红外探测器的。热电堆红外探测器的工作原理是基于塞贝克效应的红外辐射探测。把两种不同材料的一端相连,另一端不相连,形成一对热电偶。当相连的一端受热温度增加时,会在材料的两端形成温差ΔT,那么两种材料不相连的两端会有电势差产生ΔV。通过对输出信号的处理可以探测到最初的红外光源的强度和波长大小等特性。关于热电堆红外探测器的研究重点在于吸收层材料的改进和如何与CMOS工艺更好的兼容,而传统的热电堆红外探测器的缺点首先是吸收层材料对红外的吸收率低,对不同波段的红外光吸收率相差较大。其次热电偶材料主要采用金属,不能与CMOS兼容;另外“三明治”结构采用多层介质膜,因为是多层所以容易出现各层应力不匹配的问题。

  中北大学、中国科学院微电子研究所针对吸收层材料对红外的吸收率低的缺点,提出一种通过制作“黑硅”的方法处理多晶硅或非晶硅得到锥状森林结构提高红外吸收率(专利申请号为CN9.9)。该MEMS热电堆红外探测器的主要结构包括:硅衬底、介质支撑膜、多组由P/N型多晶硅热偶条上下叠置构成的热电堆以及红外吸收层材料。

  UD控股有限责任公司提出了一种“超点阵量子阱红外探测器”(专利申请号为CN3.9),该专利申请的技术方案中,通过对悬臂14、15制作方法和材料的改进,降低了吸收器12与悬臂14、15之间的导热性,从而降低热泄露,改善红外探测器的性能。见图2。

  由于电读出红外成像系统需要在红外焦平面阵列(FPA)的探测单元内部集成高信噪比的读出电路,通过该集成电路将与红外辐射强弱成比例的电学信号以逐行的方式读出,经过处理,合成用于显示器显示的视频信号。电读出的方式已经十分成熟,然而仍存在一些不足之处:(1)在探测单元内部集成的读出电路会产生额外的热量引起焦耳噪声,使探测灵敏度降低;(2)随着红外焦平面阵列像素的增加,很难做到同时兼顾高分辨率和高帧率的技术需求;(3)针对热型的红外探测器,读出电路中使用的金属材料会增加整个探测单元的热导,导致探测灵敏度降低。电读出方式的这些不足,使得光读出方式逐渐受到研究者的关注。

  法布里-泊罗干涉型光学读出热成像系统的工作机理是红外热效应、双金属片效应和光的干涉原理。换而言之,该系统就是利用双材料梁由于红外热效应和双金属片效应而产生的位移对可见光的强度进行调制,从而直接将红外图像直接转化为可见光图像。

  北京大学提出了“一种基于MEMS技术的全波段红外焦平面阵列”(专利申请号为CN0.X),其为一种典型的光学读出型MEMS红外探测器结构。其工作原理是:当红外光辐射到焦平面阵列时,设计在红外敏感面上的红外吸收结构将吸收的能量转换成热能,由于双材料效应,微悬臂梁像元发生偏转,光学检测系统通过透明衬底读出微悬臂梁像元阵列的形变量和分布。该发明提供的红外焦平面阵列通过在红外敏感面上设置的超材料结构,可进行全波段红外探测和成像,工作在非制冷环境下,可采用简单的聚酰亚胺牺牲层工艺制造。

  中国科学院上海微系统与信息技术研究所提出了一种光学读出红外探测器结构(专利申请号为CN0.5),其改善了可见光利用率。其结构包括:玻璃衬底和通过锚结构悬空于玻璃衬底上的悬浮结构;悬浮结构包括可见光反射层、红外吸收层以及支撑梁;通过将可见光反射层悬空地设置于玻璃衬底上,并且红外吸收层空于可见光反射层上,实现了可见光反射层和红外吸收层分离,从而避免了可见光反射层由于双材料效应导致变形,且可见光反射层面积的增加提高了可见光的利用率,从而使红外探测器同时满足对器件各方面的要求,提高器件的综合性能。

  热敏电阻探测器,由半导体薄膜材料制成。半导体薄膜材料吸收红外辐射,温度升高导致其电阻发生变化,信号读出电路把电阻的变化转换为电压的变化。信号读出电路输出电压的稳定值与入射辐射的功率成正比。虽然热敏电阻探测器并非MEMS红外传感器的热点,但是近年仍有研究机构对热敏电阻型MEMS红外传感器做出技术上的改进,例如以下这项专利:

  中国科学院上海微系统与信息技术研究院提出了一种具有较高信噪比的红外探测器阵列及其制作方法(专利申请号为CN5.8),该红外探测器阵列的结构特点在于在非致冷红外探测器像素的悬桥结构上制作两组热敏单元B1和B2,在衬底上制作另外两组热敏单元S1和S2,再通过惠斯通电桥形式将这四组热敏单元连接起来,差分输出电信号,从而抑制了电路噪声,可显著地提高器件的信噪比。

  继续提高芯片性能和集成度、降低制造成本,一直并且仍然是热红外探测器的发展方向。从性能角度来看,在微机械加工技术日益成熟的情况下,灵敏度的提高主要涉及到热敏感材料或元件的选择。从集成度来看,非制冷列阵正循着可见光图像传感器的路径发展。随着探测器的日益复杂和完善,将开发与之兼容的多芯片组件和表面安装技术,以制作更高集成度的摄像器件。从实现低成本角度来看,制作与CMOS工艺完全兼容的单片集成式微机械热红外探测器及阵列是实现低成本的有效途径,这需要开发更合理的集成方案的提出。

  文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

  在更接近患者的传感器层面,MEMS、纳米技术、超低功耗传感器、无线充电和新通信协议的持续发展都会产生....

  2018年,华灿光电并购美新半导体,切入MEMS传感器领域,实现LED业务和传感器业务双主业发展。

  IMT再次颁发2018年度MEMS专项奖学金 以鼓励在MEMS制造领域的创新

  IMT公司专项奖学金支持未来之才开展创新研究,推动MEMS制造工艺技术快速发展。

  MEMS微振镜也称为MEMS扫描镜、MEMS微镜,本文统一采用MEMS微振镜表达。按原理区分,主要包....

  然后,Petersen开始构建自己的第一个MEMS器件。通过在显微镜下观察一些喷墨打印机的喷头,他发....

  内燃机设计需要精确控制的点火顺序。控制引擎参数的微控制器不仅要针对活塞位置修改点火关系,在更先进的引....

  霍尔效应IC作为接近传感器,用于接近检测和旋转机构的角速度测量等应用。霍尔效应器件可以在没有机械接触....

  本文介绍了一种基于AT89S52单片机控制的智能型金属探测器重点研究了它的硬件组成、软件设计、工作原....

  随着热红外技术的发展,无人机搭载红外热像仪的应用也越来越广泛,例如在环境污染方面,因污水温度比河水温....

  IRay的12μm系列非制冷红外焦平面探测器采用氧化钒技术方案, NETD小于40mK,支持14-b....

  意法半导体推出单片集成三轴MEMS加速度计和温度传感器的产品:LIS2DTW12

  LIS2DTW12的封装厚度仅为0.7mm,比其它厂商的多合一传感器薄约30%,腾出的空间可容纳容量....

  HA:MEMS包含各种可动元件并且需要各种检测工艺。对于不同的检测工艺通常需要多个步骤,而在产线中具....

  This is a brief review of key specifications for Keysight broadband detectors....

  美国西北大学量子器件中心研制出了M-结构的超晶格材料,降低了长波、超长波探测器中遂穿及扩散电流,因此....

  温度传感器具有0.8°C的测量准确度,同时精确度也媲美独立的标准温度传感器。

  公众可以将自己的电脑“借”给科学界,来助力解锁黑洞相撞时引力波里的秘密

  Etienne 和其他的科研工作者们希望通过让公众们参与科研项目来大幅增加引力波的理论预测数量,从而....

  除强化的温度补偿功能和温度传感器优异的准确度外,加速度计还提供65种不同的用户模式,让开发人员能够灵....

  传感器正成为工业基础设施应用的核心,应用依赖MEMS进行状态监控和结构健康监测。

  耐威科技于2019年4月19日披露年报,公司2018年实现营业总收入7.1亿,同比增长18.7%;

  如今,深度学习在众多领域都有一席之地,尤其是在计算机视觉领域。尽管许多人都为之深深着迷,然而,深网就....

  4月18日,耐威科技发布其2018年业绩报告。数据显示,耐威科技2018年实现营收7.12亿元,同比....

  哈佛学生写的Python模块,进入Github飙升榜TOP 3,超过1000星

  VLBI的测量精度可以达到百分之几角秒、千分之几角秒甚至更高。对于人造天体,如人造地球卫星、绕月卫星....

  技术成熟的MEMS加速度计分为三种:压电式、容感式、热感式,压电式MEMS加速度计运用的是压电效应,....

  可用于评估Si50xf系列CMEMS振荡器的SI501-2-3-4-EVB评估套件

  SI501-2-3-4-EVB,评估套件,是一个USB插件板,可用于评估Si50xf系列CMEMS振荡器。 Si50x CMEMS...

  一是MEMS微振镜帮助激光雷达摆脱了笨重的马达、多棱镜等机械运动装置,毫米级尺寸的微振镜大大减少了激....

  Rydberg技术团队意识到,他们可以用调到正确临界频率的激光来清除充满激发钯原子的蒸汽腔。这使得原....

  单电容传感器的一个极板固定,称为静极板,另一极板与被测物体连接为动极板。差分电容传感器的上下极板均固....

  嗨,我的8752C VNA显示有缺陷的A3光源,由频谱分析仪检查sma输出端口确认(在任何功率设置下小于-30 dBm)。 我追踪问题(...

  罗姆是一家半导体和电子零部件的企业,始终坚持“品质第一”的企业宗旨,提供了种类齐全、型号各异的MEMS传感器,是工程师进行...

  博世最新的SMI230产品能够精确测量车辆的偏航角速度以及加速度,帮助车辆的导航系统持续计算车辆运动....

  MEMS微镜已经存在多年,甚至在视频投影机这样的日常设备中得到了应用。当今MEMS微镜的问题在于很难....

  工作于红外波段的图像探测器普遍存在着灵敏度差、效率较低、价格昂贵等缺点。通过频率上转换的方法将红外图....

  这套系统采用光能供电,生命周期可达10年。不同于传统的太阳能供电,这种供电模式基于类似植物“光合作用....

  随着智能手机中智能语音应用的逐渐升级,作为语音沟通中最重要的接收和信号转化的载体,MEMS麦克风也因....

  当栅极和源极之间的偏置电压超过开关阈值电压时,梁上的触点便接触漏极,源极和漏极之间的电路闭合,开关接....

  ULIS宣布推出的新品ATT0640,是一款VGA / 12μm像元间距的热成像传感器

  根据Yole《非制冷红外成像仪和探测器技术及市场趋势-2019版》报告显示,PVS细分市场是全球红外....

  “机器人和无人机是绝对可能的应用领域,”Gylfason说,“目前的激光雷达系统对于自动驾驶汽车而言....

  研究人员首次利用MEMS可调谐波导光栅在实验中成功演示了低功率光束操纵技术。

  超低功耗的片上系统(SoC)控制整个ToF处理过程:发送超声波脉冲,将接收的超声回波数字化,检测To....

  癌症早期诊断是一种专门针对癌症早期患者的诊疗方法,其目的在于早发现早治疗,从而减轻患者痛苦和精神、经....

  当我使用STMicro主板STEVAL-MKI109V3来评估MEMS传感器板STEVAL-MKI136V1和STEVAL-MKI179V...

  新研究中,研究人员试图将影像深度和解析度都做到最好。近红外光与其他光学方法相比有较长的波长,可穿透人....

  数字X射线 (DXR)、磁共振成像和其他医疗设备要求数据采集系统具备小型、高性能、低功耗等特性,以满....

  SMART Microsystems公司的Apanius认为,基于MEMS的小型化解决方案将继续推动....

  Keyence推出了采用 MEMS微振镜的新款多点式激光传感器IX系列

  激光跟踪和高度检测系统将激光照射到指定位置,并用其CMOS传感器计算距离。

  ADIS16209作为业界最精密的微电子机械系统(MEMS)倾斜计,提供小于0.1度线性倾斜误差的全....

  美国国家标准技术研究院把非接触式光学测量仪器连接在一个基于互联网的MEMS计算器上。利用简单有效的光....

  通常来说,一颗低轨道卫星在地球上空几百公里处,以 7500 米/秒以上的速度沿轨道运行。卫星运行速度....

  Micro-inertial公司推出最新研发的惯性测量单元和运动传感系统

  据Micro-Inertial的首席技术官Navid Yazdi博士称,这些系统“利用我们的核心ME....

  BMI270有两种应用特定型版本。“手势”版本可检测手势,包括轻弹进/出,手臂上/下和手腕倾斜。此版....

  Bosch Sensortec在本次慕尼黑电子展推出了专为可穿戴应用打造的超低功耗智能惯性测量单元(....

  从而在相对容易探测到的自由电子中播下了雪崩式的快速增长,电子雪崩可以从单个种子电子开始。因为放射源附....

  受惠于2007 年苹果手机和任天堂Wii 游戏机的诞生,MEMS 在消费电子领域迎来喷薄式的发展。i....

  在伯克利学习微机电系统工程博士学位期间,Ernest不仅专注于学业,开始专注于射频MEMS。他在黎明....

  要求设备灵敏,能够探测各种频率gps定位信号。 +V:uu8316 ...

  作者:Kent Novak,德州仪器(TI)全球高级副总裁兼DLP®产品总经理 从汽车到厨房,甚至是更多的场景,装有数百万个闪...

  和特点 高预校准精度:0.5°C(最大值,+25°C) 出色的线°C) 宽工作温度范围:-25°C至+105°C 单电源供电:+4 V至+30 V 出色的可重复性和稳定性 高电平输出: 1 µA/K 双端单芯片IC:温度输入/电流输出 自热误差极小产品详情 AD592是一款双端单芯片集成电路温度传感器,其输出电流与绝对温度成比例。在宽电源电压范围内,该器件可充当一个高阻抗、1 µA/K温度相关电流源。改进的设计和对IC薄膜电阻的激光晶圆调整,使得AD592能够实现前所未有的绝对精度水平和非线性误差性能,而价格则与以前的产品相当。AD592可用于-25°C至+105°C应用,目前一般使用常规温度传感器(热敏电阻、RTD、热电偶和二极管等)。它采用塑封封装,具有单芯片集成电路固有的低成本优势,而且应用所需的总器件数非常少,因此AD592是目前性价比最高的温度传感器。使用AD592时,无需昂贵的线性化电路、精密基准电压源、电桥器件、电阻测量电路和冷结补偿。典型应用领域包括:电器温度检测、汽车温度测量和控制、HVAC(暖通空调)系统监控、工业温度控制、热电偶冷结补偿、电路板级电子温度诊断、仪器仪表温度读出选项,以...

  和特点 低工作电压:+2.7 V至+5.5 V 直接以摄氏度校准(°C) 比例系数:10 mV/8°C(TMP37为20 mV/8°C) 精度:±2°C(整个温度范围内,典型值) 线°C(典型值) 能稳定驱动较大容性负载 额定温度范围:-40 °C至+125 °C,工作温度最高可达+150 °C 静态电流:小于50 µA 关断电流:最大0.5 µA 产品详情 TMP35/TMP36/TMP37是低电压、精密摄氏温度传感器,提供与摄氏温度成线性比例关系的电压输出。TMP35/TMP36/TMP37不需要执行任何外部校准,在+25°C时典型精度为±1°C,在−40°C至+125°C温度范围内典型精度为±2°C。TMP35/TMP36/TMP37的低输出阻抗及其线性输出和精密校准可简化与温度控制电路和ADC的接口。所有三个器件均可采用2.7 V至5.5 V的单电源供电。电源电流低于50 μA,自热效应非常小,在静止空气中小于0.1°C。此外还可以利用关断功能将电源电流降至0.5 μA以下。TMP35与LM35/LM45功能兼容,25°C时提供250 mV输出,TMP35温度测量范围为10°C至125°C。TMP36的额定温度范围为−40°C至+125°C,25°C时提供750 mV输出,采用2.7 V单电源时工作温度可...

  和特点 低工作电压:+2.7 V至+5.5 V 直接以摄氏度校准(°C) 比例系数:10 mV/°C(TMP37为20 mV/°C) 精度:±2 °C(整个温度范围内,典型值) 线 °C(典型值) 能稳定驱动较大容性负载 额定温度范围:-40 °C至+125 °C,工作温度最高可达+150 °C 静态电流:小于50 µA 关断电流:0.5 µA(最大值) 产品详情 TMP35/TMP36/TMP37是低电压、精密摄氏温度传感器,提供与摄氏温度成线性比例关系的电压输出。TMP35/TMP36/TMP37不需要执行任何外部校准,在+25°C时典型精度为±1°C;在−40°C至+125°C温度范围内典型精度为±2°C。TMP35/TMP36/TMP37的低输出阻抗及其线性输出和精密校准可简化与温度控制电路和ADC的接口。所有三个器件均可采用2.7 V至5.5 V的单电源供电。电源电流低于50 μA,自热效应非常小,在静止空气中小于0.1°C。此外还可以利用关断功能将电源电流降至0.5 μA以下。TMP35与LM35/LM45功能兼容,25°C时提供250 mV输出,温度测量范围为10°C至125°C。TMP36的额定温度范围为−40°C至+125°C,25°C时提供750 mV输出,采用2.7 V单电源时工作温度可达...

  和特点 低工作电压:+2.7 V至+5.5 V 直接以摄氏度校准(°C) 比例系数:10 mV/8°C(TMP37为20 mV/8°C) 精度:±2°C(整个温度范围内,典型值) 线°C(典型值) 能稳定驱动较大容性负载 额定温度范围:-40 °C至+125 °C,工作温度最高可达+150 °C 静态电流:小于50 µA 关断电流:0.5 µA(最大值) 产品详情 TMP35/TMP36/TMP37是低电压、精密摄氏温度传感器,提供与摄氏温度成线性比例关系的电压输出。TMP35/TMP36/TMP37不需要执行任何外部校准,在+25°C时典型精度为±1°C,在−40°C至+125°C温度范围内典型精度为±2°C。TMP35/TMP36/TMP37的低输出阻抗及其线性输出和精密校准可简化与温度控制电路和ADC的接口。所有三个器件均可采用2.7 V至5.5 V的单电源供电。电源电流低于50 μA,自热效应非常小,在静止空气中小于0.1°C。此外还可以利用关断功能将电源电流降至0.5 μA以下。TMP35与LM35/LM45功能兼容,25°C时提供250 mV输出,TMP35温度测量范围为10°C至125°C。TMP36的额定温度范围为−40°C至+125°C,25°C时提供750 mV输出,采用2.7 V单电源时工作...

  和特点 工作温度范围:–40°C至+105°C 单电源供电:4 V至30 V 出色的可重复性和稳定性 高电平输出:1 µA/K 单芯片IC:温度输入/电流输出 自热误差极小 产品详情 TMP17是一款单芯片集成电路温度传感器,其输出电流与绝对温度成比例。在宽电源电压范围内,该器件可充当一个高阻抗、1 µA/K温度相关电流源。改进的设计和对IC薄膜电阻的激光晶圆调整,使得TMP17能够实现前所未有的绝对精度水平和非线性度误差性能,而价格则与以前的产品相当。 TMP17可用于-40℃至+105°C应用,这些应用目前一般使用常规温度传感器(热敏电阻、RTD、热电偶和二极管等)。使用TMP17时,无需昂贵的线性化电路、精密基准电压源、电桥器件、电阻测量电路和冷结补偿。TMP17采用低成本的SO-8表贴封装。 方框图...

  和特点 200°C温度测量范围 精度优于满量程的±2% 线 mV/°C 输出与温度 x V+成比例 单电源供电 反向电压保护 自热效应极小 高电平、低阻抗输出产品详情 AD221001是一款片内集成信号调理功能的单芯片温度传感器,工作温度范围为-50°C至+150°C,非常适合众多HVAC、仪器仪表和汽车应用。由于内置信号调理功能,因此无需任何调整、缓冲或线性化电路,系统设计得以大大简化,整体系统成本也会降低。输出电压与温度和电源电压的乘积成比例(比率关系)。采用+5.0 V单电源时,输出摆幅从0.25 V(-50°C)至+4.75 V(+150°C)。由于具有比率特性,AD22100在与模数转换器接口时可提供高性价比解决方案。ADC的+5 V电源用作ADC和AD22100的基准电压源(参见数据手册中的图2),因而无需使用精密基准电压源,成本得以降低。 方框图...

  和特点 工作温度范围:–55°C至+125°C(–67°F至+257°F)精度:±1.0°C°C(整个温度范围内,典型值)温度比例电压输出用户编程温度跳变点用户编程迟滞20 mA开路集电极跳变点输出TTL/CMOS兼容型单电源供电:4.5 V至13.2 VPDIP、SOIC和TO-99封装 产品详情 TMP01是一款温度传感器,产生与绝对温度成比例的电压输出,并在器件高于或低于特定温度范围时,从两路输出之一产生控制信号。高/低温度跳变点和迟滞(过冲)频带均由用户选择的外部电阻确定。对于大批量生产,这些电阻均以片上方式提供。TMP01由一个带隙基准电压源和一对匹配比较器构成。基准电压源同时提供稳定的2.5 V输出和与绝对温度(VPTAT)成比例的电压,其温度系数非常精确,为5 mV/K;25°C时,基准电压为1.49 V(标称值)。比较器基于外部设定的温度跳变点比较VPTAT,当超过其中一个阈值时则产生一个开路集电极输出信号。迟滞也可通过外部电阻链编程,取决于来自2.5 V基准电压源的总电流。该电流生成镜像,并在触发一个比较器后,产生一个极性正确的迟滞失调电压。两个比较器相互并联,以确保消除迟滞重叠,并消除相邻跳变区之间不稳定的跃迁。TMP01采...

  和特点 线 µA/K 宽温度范围:-55°C至+150°C 与探头兼容的陶瓷传感器封装 双端器件:电压输入/电流输出 激光调整至±0.5°C校准精度(AD590M) 出色的线M) 宽电源电压范围:4 V至30 V 传感器与外壳绝缘 低成本 产品详情 AD590是一款双端集成电路温度传感器,其输出电流与绝对温度成比例。在4 V至30 V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1 µA/K。片内薄膜电阻经过激光调整,可用于校准器件,使该器件在298.2K (25°C)时输出298.2 µA电流。 AD590适用于150°C以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。除温度测量外,还可用于分立器件的温度补偿或校正、与绝对温度成比例的偏置、流速测量、液位检测以及风速测定等。AD590可以裸片形式提供,适合受保护环境下的混合电路和快速温度测量。 AD590特别适合远程检测应用。它提供高阻抗电流输出,对长线路上的压降不敏...

  和特点 可测量温度和两个电压 电压输出与温度成比例 用于温度和电压的可调门限 ±1°C 远端温度准确度 ±2°C 内部温度准确度 ±1.5% 电压门限准确度 3.5ms 更新时间 2.25V 至 5.5V 电源电压 输入干扰抑制 可调复位超时 220μA 静态电流 漏极开路警报输出 采用 3mm x 3mm QFN 封装 产品详情 LTC®2995 是一款高准确度温度传感器和双通道电源监视器。该器件可将一个外部二极管传感器的温度和 / 或其自身芯片的温度转换为一个模拟输出电压,并抑制由于噪声和串联电阻引起的误差。将两个电源电压和测量温度与采用阻性分压器设定的上限和下限进行比较。如果某个门限被超过,则器件将通过把对应的漏极开路逻辑输出拉至低电平以传送一个警报信号。LTC2995 可采用普遍使用的 NPN 或 PNP 晶体管或者新式数字器件内置的温度二极管提供 ±1°C 的准确温度结果。电压的监视准确度为 1.5%。一个 1.8V 基准输出简化了门限设置,并可用作一个 ADC 基准输入。LTC2995 采用紧凑型 3mm x 3mm QFN 封装,为温度和电压监视提供了一款准确和低功率的解决方案。 应用 网络服务器 内核、I/O 电压监视器 台式电脑和笔记本电脑 环境监测 方框图...

  和特点 3.3 V单电源供电 温度系数:28 mV/°C 100°C温度测量范围(0°C至+100°C) 精度优于满量程的2.5% 线% 输出与温度 x VS成比例 自热效应极小 高电平、低阻抗输出 反向电源电压保护 产品详情 AD22103是一款片内集成信号调理功能的单芯片温度传感器,工作温度范围为0°C至+100°C,非常适合众多3.3 V应用。由于内置信号调理功能,因此无需任何调整、缓冲或线性化电路,系统设计得以大大简化,整体系统成本也会降低。输出电压与温度和电源电压的乘积成比例(比率关系)。采用+3.3 V单电源时,输出摆幅从0.25 V(0°C)至+3.05 V(+100°C)。由于具有比率特性,AD22103在与模数转换器接口时可提供高性价比解决方案。ADC的电源用作ADC和AD22103的基准电压源,因而无需使用精密基准电压源,成本得以降低。应用 微处理器散热管理 电池和低供电系统 电源温度监控 系统温度补偿 板级温度检测 方框图...

  和特点 可将远程传感器或内部二极管温度转换为模拟电压±1°C 远程温度准确度±1.5°C 内部温度准确度内置串联电阻抵消2.5V 至 5.5V 电源电压 1.8V 基准电压输出 3.5ms VPTAT 更新时间4mV/Kelvin 输出增益 170μA 静态电流采用 6 引脚 2mm x 3mm DFN 封装 产品详情 LTC®2997 是一款高准确度模拟输出温度传感器。该器件可将一个外部传感器的温度或其自身的温度转换为一个模拟电压输出。一种内置算法能够消除 LTC2997 与传感器二极管之间的串联电阻所引起的误差。LTC2997 可利用低成本二极管连接的 NPN 或 PNP 晶体管、或者利用微处理器或 FPGA 上的集成型温度晶体管来提供准确的测量结果。将引脚 D+ 连接至 VCC 便可把 LTC2997 配置为一个内部温度传感器。LTC2997 提供了一个附加的 1.8V 基准电压输出,该输出既可用作一个 ADC 基准输入,也可用于产生与 VPTAT 输出进行比较的温度门限电压。LTC2997 提供了一款适合于准确温度测量的精准和通用型微功率解决方案。Applications温度测量远程温度测量环境监视系统热控制台式电脑和笔记本电脑网络服务器 方框图...

  和特点 高性能、±2000°/s角速率传感器 长寿命: 保证1000小时(TA = 175°C) 创新型陶瓷垂直贴装封装,适合于俯仰或滚动速率响应 宽工作温度范围: -40°C至175°C 可在宽频率范围内提供高振动抑制特性 抗冲击能力:10,000 g 输出与基准电源成比率 5 V单电源供电 根据数字命令执行自测 温度传感器输出产品详情 ADXRS645是一款高性能角速率传感器,具有出色的抗振动能力,可用于高温环境中。 ADXRS645采用ADI公司取得专利的大规模BiMOS表面微加工工艺制造,多年实际应用证明性能稳定可靠。 先进的差分四传感器设计提供出色的加速和振动抑制。 输出信号RATEOUT是电压值,与围绕封装顶部垂直轴转动的角速率成比例。 最小测量范围为±2000°/,加入单个外部电阻之后可扩展至±5000°/s。 输出与所提供的基准电源成比率。 芯片工作还需要其它几个外部电容。 该器件提供温度输出,用于补偿技术。 两路数字自测输入通过机电方式激励传感器,以测试传感器和信号调理电路是否正常工作。 ADXRS645 提供 8 mm × 9 mm × 3 mm、15引脚钎焊引脚三列直插式封装。应用 地质勘探中的井下测量 极高温度工业应用 恶劣的机械环境方框图...

  ADGM1004 带集成驱动器的0 Hz至13 GHz、2.5kV HBM ESD SP4T MEMS开关

  和特点 完全工作频率低至0 Hz/dc 导通电阻:1.8 Ω(典型值) 关断泄漏:0.5 nA(最大值) −3 dB带宽 RF2、RF3为13 GHz(典型值) RF1、RF4为10.8 GHz(典型值) RF性能特性 插入损耗:0.45 dB(典型值,2.5 GHz) 隔离:24 dB(典型值,2.5 GHz) IIP3:67 dBm(典型值) 射频(RF)功率:32 dBm(最大值) 驱动寿命:10亿周期(最小值) 密封开关触点 开关导通时间:30 μs(典型值) 静电放电(ESD)人体模型(HBM)额定值 5 kV(对于RF1至RF4和RFC引脚) 2.5 kV(对于所有其他引脚) 集成驱动器,无需外部驱动器 电源电压:3.1 V至3.3 V CMOS/LVTTL兼容 并行接口和独立控制开关 没有电源时,开关处于开路状态有关避免所有RF引脚上出现浮空节点的要求,请参见“应用信息”部分 5 mm × 4 mm × 1.45 mm、24引脚LFCSP 产品详情 ADGM1004是一款宽带、单刀四掷(SP4T)开关,采用ADI公司的微型机电系统(MEMS)开关技术制造而成。该技术支持小型、宽带宽、高线性、低插入损耗开关,能够在低至直流的频率范围内工作,是各种RF应用的理想解决方案。集成控制芯片可生成通过CMO...

  和特点 频域三轴振动传感器 平坦的频率响应:最高至5 kHz 数字加速度数据,± 18 g测量范围数字范围设置:0 g至1 g/5 g/10 g/20 g 实时采样模式:20.48 kSPS(单轴) 捕获采样模式:20.48 kSPS(三轴)触发器模式:SPI、计时器、外部可编程抽取滤波器,11种速率设置选定的滤波器设置支持多记录捕获手动捕获模式支持时域数据采集 针对所有三轴(x, y, z)的512点实数值FFT 3种窗口选项:矩形、Hanning、平顶 可编程FFT均值功能:最多255个均值 存储系统:所有三轴(x, y, z)上14个FFT记录产品详情 ADIS16228 iSensor® 是一款完整的振动检测系统,集三轴加速度检测与先进的时域和频域信号处理于一体。时域信号处理包括可编程抽取滤波器和可选的窗函数。频域处理包括针对各轴的512点、实数值FFT和FFT均值功能,后一功能可降低噪底变化,从而提高分辨率。通过14记录FFT存储系统,用户可以追踪随时间发生的变化,并利用多个抽取滤波器设置捕获FFT。20.48 kSPS采样速率和5 kHz平坦频段提供的频率响应适合许多机械健康状况检测应用。铝芯可实现与MEMS加速度传感器的出色机械耦合。在所有操作中,内部时钟驱动数据采样和信号处理系统...

  和特点 高性能、层内滚动速率陀螺仪 温度补偿,高精度偏移和灵敏度性能 陀螺仪噪声:2°/s rms(最大值) 16位数据字串行端口接口(SPI)数字输出 静态功耗:20 mA 3.3 V和5 V电源供电 温度范围:-40°C至+105°C 针对层内滚动速率检测的16引脚SOIC_CAV表贴封装 通过汽车应用认证 产品详情 ADXRS910是一款针对汽车侧翻检测应用的高性能层内陀螺仪。ADXRS910还具有内部温度传感器,用于补偿偏移和灵敏度性能,在−40°C至+105°C温度范围内提供出色的稳定性。该陀螺仪提供±300°/s满量程性能,灵敏度为80 LSB/°/s。其谐振磁盘传感器结构可实现围绕层内轴的角速率测量。-3 dB滤波器转折频率可选择为24.6 Hz、49 Hz、102 Hz或201 Hz。该器件的传感器数据输出为包含在32位SPI处理中的16位、二进制补码字。SPI通信兼容频率高达10 MHz。ADXRS910采用16引脚倒腔SOIC封装。ADXRS910的额定工作电压为3.3 V至5 V此,功耗小于20 mA。其规格对−40°C至+105°C的温度范围有效。应用 侧翻检测 方框图...

  和特点 可将远端或内部二极管温度转换为模拟电压可调的过温和欠温门限电压输出与温度成比例±1℃ 远端温度准确度±2℃ 内部温度准确度内置串联电阻抵消漏极开路警报输出2.25V 至 5.5V 电源电压1.8V 基准电压输出200μA 静态电流10 引脚 3mm x 3mm DFN 封装 产品详情 LTC®2996 是一款高准确度温度传感器,具有可调过温和欠温门限以及漏极开路警报输出。该器件可将一个外部二极管传感器的温度或其自身芯片的温度转换为一个模拟输出电压,并抑制由于噪声和串联电阻引起的误差。将测量的温度与采用阻性分压器设定的上限和下限进行比较。如果超过门限,则器件将通过把对应的漏极开路逻辑输出拉至低电平以传送一个警报信号。LTC2996 可采用普遍使用的 NPN 或 PNP 晶体管或者新式数字器件内置的温度二极管提供 ±1℃ 的准确温度结果。一个 1.8V 基准输出简化了门限设置,并可用作一个 ADC 基准输入。LTC2996 采用紧凑型 3mm x 3mm DFN 封装,为温度监视提供了一款准确和低功率的解决方案。应用 温度监视和测量 系统热控制 网络服务器 台式电脑和笔记本电脑 环境监测 方框图...

  和特点 0°至360°倾角计±180°输出格式选项 14位数字倾斜度输出线位数字温度传感器输出 数字控制偏置校准 数字控制采样速率 数字控制滤波 数字控制方向/方位 包括速率/阈值限制的双报警设置 辅助数字I/O端口 数字激活的自测功能 数字激活的低功耗模式 SPI®兼容型串行接口 辅助12位ADC输入和DAC输出 单电源供电:3.0V至3.6V 抗冲击能力:3500 g 产品详情 ADIS16203是一款完整的倾斜角测量系统,采用ADI公司的 iSensor™集成技术制造,全部功能均集成于一个紧凑的封装中。该器件采用嵌入式信号处理解决方案来增强ADI公司的 iMEMS®传感器技术,可提供适当格式的工厂校准、传感器数字倾斜角数据,从而利用串行外设接口(SPI)即可方便地访问数据。通过SPI接口可以访问多个测量结果:360°线°线性倾斜角、温度、电源和一个辅助模拟输入。由于可以轻松访问校准的数字传感器数据,因此开发者能够获得可立即供系统使用的器件,使开发时间、成本和编程风险得以减少。通过数个内置特性,如单命令失调校准等,以及方便的采样速率控制和带宽控制,该器件很容易适应终端系统的独特特征。ADIS16...

  ADT6501 采用SOT-23封装的低成本、2.7 V至5.5 V、微功率温度开关(监控温度范围为+35°C至+115°C)

  和特点 ±0.5°C(典型)阈值精度 工厂设置跳变点范围为−45°C至+15°C,增量10°C+35°C至+115°C,增量10°C 无需外部元件 最高工作温度:125°C 开漏输出(ADT6501/ADT6503) 推挽输出(ADT6502/ADT6504) 引脚可选迟滞为2°C和10°C 电源电流:30 μA(典型值) 节省空间的5引脚SOT-23封装产品详情 ADT6501/ADT6502/ADT6503/ADT6504为跳变点温度开关,提供5引脚SOT-23封装。它们都含有一个内置带隙温度传感器,用于局部温度检测。当温度超过跳变点设置时,逻辑输出被激活。ADT6501/ ADT6503逻辑输出为低电平有效和开漏输出。ADT6502/ADT6504逻辑输出为高电平有效和推挽输出。经数字化转换后,温度的分辨率为0.125°C(11位)。工厂跳变点设置间距为10°C,冷阈值型号的设置范围为−45°C至+15°C,热阈值型号为+35°C至+115°C。这些器件不需要外部元件,典型消耗30 μA电源电流。引脚可选温度迟滞为2°C和10°C。温度开关的额定工作电压范围为2.7 V至5.5 V。 ADT6501和ADT6502仅限监控+35°C至+115°C范围内的温度。因此,当温度超过所选跳变点温度时,逻辑输出引脚变成有效状态。ADT650...

  和特点 可调失调,支持单极性或双极性工作 在整个温度范围内具有低失调漂移 宽增益可调范围 在整个温度范围内具有低增益漂移 可调一阶温度补偿 与 Vcc成比例 产品详情 AD22151G是一款线性磁场传感器,其输出电压与垂直施加于封装上表面的磁场成比例。 方框图

  和特点 用户可编程的温度设定点 设定点精度:2.0°C 预设迟滞:4.0°C 宽电源电压范围:+2.7 VDC至+7.0 VDC 宽温度范围:-40°C至+150°C 产品详情 AD22105是一款固态恒温开关。只需一个外部编程电阻,AD22105就能用来在宽工作温度范围(-40°C至+150°C)内的任意温度精确执行开关功能。它采用新颖的电路架构,当环境温度超过用户设置的设定点温度时,AD22105置位开集输出。该器件具有约4°C的迟滞,可防止开关迅速反复地动作。 AD22105设计采用+2.7 V至+7.0 V的单电源供电,适合在电池供电应用和工业控制系统中工作。由于功耗很低(3.3 V电源电压下仅230 µW),自热误差极小,电池寿命得以最大程度地延长。该器件内置一个可选的200 kΩ上拉电阻,便于驱动CMOS输入等轻负载。 它也可以直接驱动一个低功耗LED指示器。 方框图...

本文链接:http://maxavm.net/duchudianlu/307.html
随机为您推荐歌词

联系我们 | 关于我们 | 网友投稿 | 版权声明 | 广告服务 | 站点统计 | 网站地图

版权声明:本站资源均来自互联网,如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

Copyright @ 2012-2013 织梦猫 版权所有  Powered by Dedecms 5.7
渝ICP备10013703号  

回顶部